Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a virtual patient generator (VPG) intended to be used for preclinical in silico evaluation of autonomous vasopressor administration algorithms in the setting of experimentally induced vasoplegia. Our VPG consists of two main components: (i) a mathematical model that replicates physiological responses to experimental vasoplegia (induced by sodium nitroprusside (SNP)) and vasopressor resuscitation via phenylephrine (PHP) and (ii) a parameter vector sample generator in the form of a multidimensional probability density function (PDF) using which the parameters characterizing the mathematical model can be sampled. We developed and validated a mathematical model capable of predicting physiological responses to the administration of SNP and PHP. Then, we developed a parameter vector sample generator using a collective variational inference method. In a blind testing, the VPG developed by combining the two could generate a large number of realistic virtual patients (VPs), which could simulate physiological responses observed in all the experiments: on the average, 98.1% and 74.3% of the randomly generated VPs were physiologically legitimate and adequately replicated the test subjects, respectively, and 92.4% of the experimentally observed responses could be covered by the envelope formed by the subject-replicating VPs. In sum, the VPG developed in this paper may be useful for preclinical in silico evaluation of autonomous vasopressor administration algorithms.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract This paper concerns the design and rigorous in silico evaluation of a closed-loop hemorrhage resuscitation algorithm with blood pressure (BP) as controlled variable. A lumped-parameter control design model relating volume resuscitation input to blood volume (BV) and BP responses was developed and experimentally validated. Then, three alternative adaptive control algorithms were developed using the control design model: (i) model reference adaptive control (MRAC) with BP feedback, (ii) composite adaptive control (CAC) with BP feedback, and (iii) CAC with BV and BP feedback. To the best of our knowledge, this is the first work to demonstrate model-based control design for hemorrhage resuscitation with readily available BP as feedback. The efficacy of these closed-loop control algorithms was comparatively evaluated as well as compared with an empiric expert knowledge-based algorithm based on 100 realistic virtual patients created using a well-established physiological model of cardiovascular (CV) hemodynamics. The in silico evaluation results suggested that the adaptive control algorithms outperformed the knowledge-based algorithm in terms of both accuracy and robustness in BP set point tracking: the average median performance error (MDPE) and median absolute performance error (MDAPE) were significantly smaller by >99% and >91%, and as well, their interindividual variability was significantly smaller by >88% and >94%. Pending in vivo evaluation, model-based control design may advance the medical autonomy in closed-loop hemorrhage resuscitation.more » « less
An official website of the United States government
